Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Front Plant Sci ; 14: 1257098, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37810383

RESUMO

Microbial volatile organic compounds (MVOCs) are mixtures of gas-phase hydrophobic carbon-based molecules produced by microorganisms such as bacteria and fungi. They can act as airborne signals sensed by plants being crucial players in triggering signaling cascades influencing their secondary metabolism, development, and growth. The role of fungal volatile organic compounds (FVOCs) from beneficial or detrimental species to influence the physiology and priming effect of plants has been well studied. However, the plants mechanisms to discern between FVOCs from friend or foe remains significantly understudied. Under this outlook, we present an overview of the VOCs produced by plant-associate fungal species, with a particular focus on the challenges faced in VOCs research: i) understanding how plants could perceive FVOCs, ii) investigating the differential responses of plants to VOCs from beneficial or detrimental fungal strains, and finally, iii) exploring practical aspects related to the collection of VOCs and their eco-friendly application in agriculture.

2.
J Fungi (Basel) ; 9(6)2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37367535

RESUMO

Yarrowia lipolytica is a dimorphic fungus used as a model organism to investigate diverse biotechnological and biological processes, such as cell differentiation, heterologous protein production, and bioremediation strategies. However, little is known about the biological processes responsible for cation concentration homeostasis. Metals play pivotal roles in critical biochemical processes, and some are toxic at unbalanced intracellular concentrations. Membrane transport proteins control intracellular cation concentrations. Analysis of the Y. lipolytica genome revealed a characteristic functional domain of the cation efflux protein family, i.e., YALI0F19734g, which encodes YALI0F19734p (a putative Yl-Dmct protein), which is related to divalent metal cation tolerance. We report the in silico analysis of the putative Yl-Dmct protein's characteristics and the phenotypic response to divalent cations (Ca2+, Cu2+, Fe2+, and Zn2+) in the presence of mutant strains, Δdmct and Rdmct, constructed by deletion and reinsertion of the DMCT gene, respectively. The absence of the Yl-Dmct protein induces cellular and growth rate changes, as well as dimorphism differences, when calcium, copper, iron, and zinc are added to the cultured medium. Interestingly, the parental and mutant strains were able to internalize the ions. Our results suggest that the protein encoded by the DMCT gene is involved in cell development and cation homeostasis in Y. lipolytica.

3.
J Fungi (Basel) ; 8(8)2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-36012801

RESUMO

Smut fungi comprise a large group of biotrophic phytopathogens infecting important crops, such as wheat and corn. U. maydis is a plant pathogenic fungus responsible for common smut in maize and teocintle. Through our analysis of the transcriptome of the yeast-to-mycelium dimorphic transition at acid pH, we determined the number of genes encoding chitin deacetylases of the fungus, and observed that the gene encoding one of them (UMAG_11922; CDA1) was the only one up-regulated. The mutation of this gene and the analysis of the mutants revealed that they contained reduced amounts of chitosan, were severely affected in their virulence, and showed aberrant mycelial morphology when grown at acid pH. When the CDA1 gene was reinserted into the mutants by the use of an autonomous replication plasmid, virulence and chitosan levels were recovered in the retro mutant strains, indicating that the CDA1 gene was involved in these features. These data revealed that chitosan plays a crucial role in the structure and morphogenesis of the cell wall during mycelial development of the fungus, and that in its absence, the cell wall becomes altered and is unable to support the stress imposed by the defense mechanism mounted on by the plant host during the infection process.

4.
Int. microbiol ; 25(1): 17-26, Ene. 2022. ilus
Artigo em Inglês | IBECS | ID: ibc-216009

RESUMO

The life cycle of Ustilago maydis involves alternation of a haploid saprophytic yeast-like stage and a dikaryotic hyphal virulent form. Under in vitro conditions, basidiocarps are formed. Analysis of the transcriptional network of basidiocarp formation revealed the possible involvement of a Tec transcription factor (Tec1, UMAG_02835) in the process. In some Ascomycota, Tec factors are involved in mycelial formation, pathogenesis, and interaction with other regulatory elements, but their role in Basidiomycota species is almost unknown. Accordingly, we proceeded to determine the role of this gene in U. maydis by its mutation. Tec1 was found to be a crucial factor for normal mating, basidiocarp development, and virulence, all of the functions related to the dikaryotic stage dependent of the b genes, whereas dimorphism and resistance to different stress conditions occurring in the haploid stage were not affected in tec1 mutants. The observation that mutants showed a low residual wild-type phenotype suggests the presence of a secondary mechanism that partially compensates the loss of Tec1.(AU)


Assuntos
Humanos , Ustilago maydis , Virulência , Fatores de Virulência , Fatores de Transcrição , Microbiologia
5.
Int Microbiol ; 25(1): 17-26, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34185162

RESUMO

The life cycle of Ustilago maydis involves alternation of a haploid saprophytic yeast-like stage and a dikaryotic hyphal virulent form. Under in vitro conditions, basidiocarps are formed. Analysis of the transcriptional network of basidiocarp formation revealed the possible involvement of a Tec transcription factor (Tec1, UMAG_02835) in the process. In some Ascomycota, Tec factors are involved in mycelial formation, pathogenesis, and interaction with other regulatory elements, but their role in Basidiomycota species is almost unknown. Accordingly, we proceeded to determine the role of this gene in U. maydis by its mutation. Tec1 was found to be a crucial factor for normal mating, basidiocarp development, and virulence, all of the functions related to the dikaryotic stage dependent of the b genes, whereas dimorphism and resistance to different stress conditions occurring in the haploid stage were not affected in tec1 mutants. The observation that mutants showed a low residual wild-type phenotype suggests the presence of a secondary mechanism that partially compensates the loss of Tec1.


Assuntos
Basidiomycota , Ustilago , Carpóforos , Proteínas Fúngicas/genética , Fatores de Transcrição/genética , Ustilago/genética , Virulência
6.
J Fungi (Basel) ; 7(2)2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33525315

RESUMO

The role of the Ustilago maydis putative homolog of the transcriptional repressor ScNRG1, previously described in Saccharomyces cerevisiae, Candida albicans and Cryptococcus neoformans, was analyzed by means of its mutation. In S. cerevisiae this gene regulates a set of stress-responsive genes, and in C. neoformans it is involved in pathogenesis. It was observed that the U. maydisNRG1 gene regulates several aspects of the cell response to acid pH, such as the production of mannosyl-erythritol lipids, inhibition of the expression of the siderophore cluster genes, filamentous growth, virulence and oxidative stress. A comparison of the gene expression pattern of the wild type strain versus the nrg1 mutant strain of the fungus, through RNA Seq analyses, showed that this transcriptional factor alters the expression of 368 genes when growing at acid pH (205 up-regulated, 163 down-regulated). The most relevant genes affected by NRG1 were those previously reported as the key ones for particular cellular stress responses, such as HOG1 for osmotic stress and RIM101 for alkaline pH. Four of the seven genes included WCO1 codifying PAS domain ( These has been shown as the key structural motif involved in protein-protein interactions of the circadian clock, and it is also a common motif found in signaling proteins, where it functions as a signaling sensor) domains sensors of blue light, two of the three previously reported to encode opsins, one vacuolar and non-pH-responsive, and another one whose role in the acid pH response was already known. It appears that all these light-reactive cell components are possibly involved in membrane potential equilibrium and as virulence sensors. Among previously described specific functions of this transcriptional regulator, it was found to be involved in glucose repression, metabolic adaptation to adverse conditions, cellular transport, cell rescue, defense and interaction with an acidic pH environment.

7.
Microorganisms ; 8(7)2020 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-32708448

RESUMO

Multicellularity is defined as the developmental process by which unicellular organisms became pluricellular during the evolution of complex organisms on Earth. This process requires the convergence of genetic, ecological, and environmental factors. In fungi, mycelial and pseudomycelium growth, snowflake phenotype (where daughter cells remain attached to their stem cells after mitosis), and fruiting bodies have been described as models of multicellular structures. Ustilaginomycetes are Basidiomycota fungi, many of which are pathogens of economically important plant species. These fungi usually grow unicellularly as yeasts (sporidia), but also as simple multicellular forms, such as pseudomycelium, multicellular clusters, or mycelium during plant infection and under different environmental conditions: Nitrogen starvation, nutrient starvation, acid culture media, or with fatty acids as a carbon source. Even under specific conditions, Ustilago maydis can form basidiocarps or fruiting bodies that are complex multicellular structures. These fungi conserve an important set of genes and molecular mechanisms involved in their multicellular growth. In this review, we will discuss in-depth the signaling pathways, epigenetic regulation, required polyamines, cell wall synthesis/degradation, polarized cell growth, and other cellular-genetic processes involved in the different types of Ustilaginomycetes multicellular growth. Finally, considering their short life cycle, easy handling in the laboratory and great morphological plasticity, Ustilaginomycetes can be considered as model organisms for studying fungal multicellularity.

8.
Folia Microbiol (Praha) ; 65(3): 511-521, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31721091

RESUMO

Fungi are considered model organisms for the analysis of important phenomena of eukaryotes. For example, some of them have been described as models to understand the phenomenon of multicellularity acquisition by different unicellular organisms phylogenetically distant. Interestingly, in this work, we describe the multicellular development in the model fungus S. reilianum. We observed that Sporisorium reilianum, a Basidiomycota cereal pathogen that at neutral pH grows with a yeast-like morphology during its saprophytic haploid stage, when incubated at acid pH grew in the form of multicellular clusters. The multicellularity observed in S. reilianum was of clonal type, where buds of "stem" cells growing as yeasts remain joined by their cell wall septa, after cytokinesis. The elaboration and analysis of a regulatory network of S. reilianum showed that the putative zinc finger transcription factor CBQ73544.1 regulates a number of genes involved in cell cycle, cellular division, signal transduction pathways, and biogenesis of cell wall. Interestingly, homologous of these genes have been found to be regulated during Saccharomyces cerevisiae multicellular growth. In adddition, some of these genes were found to be negatively regulated during multicellularity of S. reilianum. With these data, we suggest that S. reilianum is an interesting model for the study of multicellular development.


Assuntos
Ácidos/farmacologia , Basidiomycota/crescimento & desenvolvimento , Basidiomycota/genética , Proteínas Fúngicas/genética , Basidiomycota/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Filogenia , Transdução de Sinais/efeitos dos fármacos
9.
Arch Microbiol ; 202(1): 93-103, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31485712

RESUMO

We have described that formation of basidiocarps by Ustilago maydis requires illumination. In the current research, we have proceeded to analyze what kind of light receptors are involved in this phenomenon. Accordingly, we investigated whether the homologues of the White Collar (WC), and the phytochrome (PHY) genes played a role in this process. Mutants deficient in either one of the three U. maydis WC homologue genes (WCO1a, WCO1b, WCO2), or the phytochrome-encoding the PHY gene were obtained. Phenotypic analysis of the mutants showed that ∆wco1a mutants formed similar numbers of basidiocarps than wild-type strain, whereas ∆wco1b mutants were severely affected in basidiocarp formation when illuminated with white, blue or red light. ∆wco2 and ∆phy1 mutants did not form basidiocarps under any illumination condition. These data indicate that Wco1a is the main blue light receptor, and Wco1b may operate as a secondary blue light receptor; Phy1 is the red light receptor, and Wco2 the transcription factor that controls the photo stimulation of the genes involved in the formation of fruiting bodies. It is suggested that effectiveness of the light receptors depends on the whole structure of the complex, possibly, because their association is necessary to maintain their functional structure.


Assuntos
Carpóforos/fisiologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fotorreceptores Microbianos/genética , Fotorreceptores Microbianos/metabolismo , Ustilago/fisiologia , Carpóforos/efeitos da radiação , Ustilago/genética , Ustilago/efeitos da radiação
10.
J Basic Microbiol ; 57(7): 597-604, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28429489

RESUMO

Regulation of genes involved in nitrogen metabolism likely plays a role in the ability of fungi to exploit and survive under different environmental situations. To learn about the mechanism of adaptation of the biotrophic fungus Ustilago maydis from a medium containing a source of fixed nitrogen, to a medium depending on the ability to fix N2 by its bacterial endosymbiont, we explored gene expression profiles using RNA-Seq analyses under these two conditions. The differentially expressed (DE) fungal genes were analyzed, identifying 90 genes that were regulated 24 h after shifting the fungus to media lacking ammonium nitrate as a nitrogen source. From these, mRNA levels were increased for 49 genes, whereas 41 were down-regulated. The functional description associated to the regulated genes revealed that nine key pathways were represented, including, secondary metabolism, the metabolism of nitrogen, amino acid, fatty acid, amino sugar and nucleotide sugar, purine, peroxisome, and the regulation of actin cytoskeleton. These results suggest that the interplay of U. maydis with its N2 fixing bacterial endosymbiont is a flexible process that may be active during the adaptation of the fungus to the different nitrogen sources.


Assuntos
Adaptação Fisiológica/genética , Perfilação da Expressão Gênica , Fixação de Nitrogênio , Ustilago/genética , Actinas/genética , Regulação para Baixo , Regulação Fúngica da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Nitratos/farmacologia , Nitrogênio/metabolismo , Peroxissomos/genética , Metabolismo Secundário/genética , Ustilago/efeitos dos fármacos , Ustilago/crescimento & desenvolvimento , Ustilago/metabolismo
11.
Microbiology (Reading) ; 162(6): 1009-1022, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27027300

RESUMO

Trehalose is an important disaccharide that can be found in bacteria, fungi, invertebrates and plants. In some Ascomycota fungal plant pathogens, the role of trehalose was recently studied and shown to be important for conferring protection against several environmental stresses and for virulence. In most of the fungi studied, two enzymes are involved in the synthesis of trehalose: trehalose-6-phosphate synthase (Tps1) and trehalose-6-phosphate phosphatase (Tps2). To study the role of trehalose in virulence and stress response in the Basidiomycota maize pathogen Ustilago maydis, Δtps2 deletion mutants were constructed. These mutants did not produce trehalose as confirmed by HPLC analysis, showing that the single gene disruption impaired its biosynthesis. The mutants displayed increased sensitivity to oxidative, heat, acid, ionic and osmotic stresses as compared to the wild-type strains. Virulence of Δtps2 mutants to maize plants was extremely reduced compared to wild-type strains, possibly due to reduced capability to deal with the hostile host environment. The phenotypic traits displayed by Δtps2 strains were fully restored to wild-type levels when complemented with the endogenous UmTPS2 gene, or a chimeric construct having the Saccharomyces cerevisiae TPS2 ORF. This report demonstrates the presence of a single biosynthetic pathway for trehalose, and its importance for virulence in this model Basidiomycota plant pathogen.


Assuntos
Resposta ao Choque Térmico/genética , Estresse Oxidativo/genética , Monoéster Fosfórico Hidrolases/genética , Saccharomyces cerevisiae/genética , Trealose/metabolismo , Ustilago/patogenicidade , Deleção de Genes , Glucosiltransferases , Ustilago/genética , Ustilago/metabolismo , Virulência/genética , Zea mays/microbiologia
12.
J Amino Acids ; 2012: 837932, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22957208

RESUMO

Polyamines are essential metabolites present in all living organisms, and this subject has attracted the attention of researchers worldwide interested in defining their mode of action in the variable cell functions in which they are involved, from growth to development and differentiation. Although the mechanism of polyamine synthesis is almost universal, different biological groups show interesting differences in this aspect that require to be further analyzed. For these studies, fungi represent interesting models because of their characteristics and facility of analysis. During the last decades fungi have contributed to the understanding of polyamine metabolism. The use of specific inhibitors and the isolation of mutants have allowed the manipulation of the pathway providing information on its regulation. During host-fungus interaction polyamine metabolism suffers striking changes in response to infection, which requires examination. Additionally the role of polyamine transporter is getting importance because of its role in polyamine regulation. In this paper we analyze the metabolism of polyamines in fungi, and the difference of this process with other biological groups. Of particular importance is the difference of polyamine biosynthesis between fungi and plants, which makes this process an attractive target for the control of phytopathogenic fungi.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...